CBSE SUPPLEMENTARY EXAMINATION Set I, II, III

Max. Marks: 100

SECTION - A

(Question numbers 01 to 10 carry one mark each.)
Q01. If $f: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $f(x)=3 x+2$, then find $f(f(x))$.
Q02. If $\sin ^{-1} \frac{1}{3}+\cos ^{-1} x=\frac{\pi}{2}$, then find x.
Q03. If $\left(\begin{array}{cc}\mathrm{a}+\mathrm{b} & 2 \\ 5 & \mathrm{~b}\end{array}\right)=\left(\begin{array}{ll}6 & 5 \\ 2 & 2\end{array}\right)^{\mathrm{T}}$, then find ' a '.
Q04. If A is a matrix of order 3×4 and B is a matrix of order 4×3, then find the order of matrix $(A B)$.
Q05. If $\mathrm{A}=\left(\begin{array}{cc}3 & 1 \\ 2 & -3\end{array}\right)$, then find $|\operatorname{adj} \mathrm{A}|$.
Q06. Evaluate: $\int\left(\frac{x^{3}-1}{x^{2}}\right) d x$.
Q07. Evaluate: $\int_{-\pi / 4}^{\pi / 4} \sin ^{3} x d x$.
Q08. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has a magnitude of 6 units.
Q09. Find the position vector of the mid-point of the line segment $A B$, where A is the point $(3,4,-2)$ and B is the point $(1,2,4)$.
Q10. Find the distance of the point $(2,3,4)$ from x-axis.

SECTION - B

(Question numbers 11 to 22 carry four marks each.)
Q11. Show that the function $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=\mathrm{a} x+\mathrm{b}$, where $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a} \neq 0$, is a bijection.
Q12. Prove that: $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$.
OR Solve for $x: \tan ^{-1}(x+2)+\tan ^{-1}(x-2)=\tan ^{-1}\left(\frac{8}{79}\right) ; x>0$.
Q13. Using properties of determinants, prove that: $\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=x y z(x-y)(y-z)(z-x)$.
Q14. For what value of k is the function defined by $f(x)=\left\{\begin{array}{c}\mathrm{k}\left(x^{2}+2\right), \text { if } x \leq 0 \\ 3 x+1, \text { if } x>0\end{array}\right.$ continuous at $x=0$. Also write whether the function is continuous at $x=1$.
Q15. If $y=\left(\cot ^{-1} x\right)^{2}$, then show that $\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=2$.
OR If $x^{y}=e^{x-y}$, then prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
Q16. Find the intervals in which the following function is (a) increasing (b) decreasing:

$$
f(x)=2 x^{3}-9 x^{2}+12 x+15 .
$$

OR Find the equation of tangent to the curve $y=\frac{x-7}{x^{2}-5 x+6}$ at the point where it cuts the x-axis.
Q17. Evaluate: $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$ OR $\quad \int \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$.
Q18. Find the differential equation of the family of all circles touching the x-axis at the origin.
Q19. Solve the differential equation: $x y \log \left(\frac{y}{x}\right) d x+\left(y^{2}-x^{2} \log \left(\frac{y}{x}\right)\right) d y=0$.
Q20. Using vectors, find the area of the triangle with vertices $\mathrm{A}(2,3,5), \mathrm{B}(3,5,8)$ and $\mathrm{C}(2,7,8)$.
Q21. Find the equation of the plane passing through the point $\mathrm{A}(1,2,1)$ and perpendicular to the line joining the points $\mathrm{P}(1,4,2)$ and $\mathrm{Q}(2,3,5)$. Also find the distance of this plane from the line $\frac{x+2}{2}=\frac{y-5}{-1}=\frac{z-7}{-1}$.
Q22. Find the probability distribution of the number of doublets in three throws of a pair of dice and hence find its mean.

SECTION - C

(Question numbers 23 to 29 carry six marks each.)
Q23. If $\mathrm{A}=\left(\begin{array}{ccc}3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3\end{array}\right)$, then find A^{-1}. Hence solve the following system of equations: $3 x+2 y+z=6,4 x-y+2 z=5,7 x+3 y-3 z=7$.
Q24. Find the maximum area of an isosceles triangle inscribed in the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, with its vertex at one end of the major axis.
Q25. Using integration, find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 16, x^{2} \leq 6 y\right\}$.
OR Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$ by using integration.
Q26. Evaluate $\int^{2}\left(x^{2}+5 x\right) d x$ as limit of sums.
OR Evaluate: $\int[\sqrt{\tan x}+\sqrt{\cot x}] d x$.
Q27. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$. Also write the equation of the line joining the given point and its image and find the length of the segment joining the given point and its image.
Q28. A dealer deals in two items A and B. He has ₹ 15,000 to invest and a space to store at the most 80 pieces. Item A costs him ₹ 300 and item B costs him ₹ 150 . He can sell items A and B at profits of ₹40 and ₹25 respectively. Assuming that he can sell all that he buys, formulate the above as a linear programming problem for maximum profit and solve it graphically.
Q29. In a bolt factory machines, A, B and C manufacture respectively $25 \%, 35 \%$ and 40% of the total bolts. Of their output 5, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from production and is found to be defective. What is the probability that it manufactured by the machine B?

NOTE: Only those Questions from Set II and III are given here which are not in common with Set I.

SECTION - B (4 Marks)

Q01. Prove that: $\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{36}{85}$.
Q02. Prove that: $\sin ^{-1} \frac{3}{5}+\cos ^{-1} \frac{12}{13}=\sin ^{-1} \frac{56}{65}$.
Q03. Solve for x : $\tan ^{-1} \frac{x}{2}+\tan ^{-1} \frac{x}{3}=\frac{\pi}{4} ; 0<x<\sqrt{6}$.
Q04. Solve for $x: 2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sec x)$.
Q05. Using properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
y+z & z+x & x+y
\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)
$$

Q06. Using properties of determinants, prove that: $\left|\begin{array}{cccc}a+1 & 1 & 1 \\ 1 & b+1 & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c+a b+b c+c a$.
Q07. Find the value of a and b such that the function defined as follows is continuos:

$$
f(x)=\left\{\begin{array}{c}
x+2, x \leq 2 \\
a x+b, 2<x<5 \\
3 x-2, x \geq 5
\end{array}\right.
$$

Q08. Find the value of k, for which the function f defined below is continuous:

$$
f(x)=\left\{\begin{array}{c}
\frac{\mathrm{k} \cos x}{\pi-2 x}, \\
3<\frac{\pi}{2} \\
3, x=\frac{\pi}{2} \\
\frac{3 \tan 2 x}{2 x-\pi},
\end{array}, x>\frac{\pi}{2} .\right.
$$

SECTION - C (6 Marks)

Q01. Find $\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$. Use this to solve the system of equations: $x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$.
Q02. If $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right)$, find A^{-1}. Hence solve the following system of equations: $x+2 y-3 z=-4,2 x+3 y+2 z=2,3 x-3 y-4 z=11$.
Q03. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $8 / 27$ of the volume of the sphere.
Q04. Prove that the radius of the right circular cylinder of greatest curved surface area, which can be inscribed in a given right circular cone, is half that of the cone.

ANSWERS OF CBSE SUPPLEMENTARY Exams. - Set I

Q01. $9 x+8 \quad$ Q02. $\frac{1}{3}$
Q03. 4 Q04. 3×3
Q05. -11
Q06. $\frac{1}{x}+\frac{1}{2} x^{2}+k \quad$ Q07. 0
Q08. $\quad 4 \hat{i}-2 \hat{j}+4 \hat{k}$
Q09. $2 \hat{i}+3 \hat{j}+\hat{k}$

Q10. 5
Q12. OR $\frac{1}{4}$
Q14. $\mathrm{k}=\frac{1}{2}$, Continuous at $x=1$
Q16.
(a) $(-\infty, 1) \cup(2, \infty)$
(b) $(1,2)$
OR $\quad x-20 y=7$

Q17. Put $\log _{e} x=t \Rightarrow x=e^{t} \Rightarrow x\left[\log \log x-\frac{1}{\log x}\right]+\mathrm{k} \quad$ OR $\quad \tan ^{-1} x-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+\mathrm{k}$
Q18. $\frac{d y}{d x}\left(y^{2}-x^{2}\right)+2 x y=0$
Q19. $4 y^{2} \log y=x^{2}\left[2 \log \left(\frac{y}{x}\right)+1\right]$
Q20. $\frac{\sqrt{61}}{2}$ sq.units
Q21. $x-y+3 z=2, \frac{12}{11} \sqrt{11}$ units
Q22.

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$125 / 216$	$75 / 216$	$15 / 216$	$1 / 216$

Q23. $\frac{1}{62}\left[\begin{array}{ccc}-3 & 9 & 52 \\ 26 & -16 & -2 \\ 19 & 5 & -11\end{array}\right] ; x=y=z=1$
Q25. $\frac{16 \pi+8 \sqrt{3}}{3}$ sq.units OR $\frac{\pi-2}{4}$ sq.units \quad Q26. $\frac{59}{6}$
OR There may be two different answers, depending upon your method:

$$
\sqrt{2} \sin ^{-1}(\cos x-\sin x)+\mathrm{k} \text { or } \sqrt{2} \tan ^{-1}\left(\frac{\tan x-1}{\sqrt{2 \tan x}}\right)+\mathrm{k}
$$

Q27. Image: (1,0,7); Eq. of Line: $\frac{x-1}{0}=\frac{y-6}{-3}=\frac{z-3}{2} ; 2 \sqrt{13}$ units
Q28. To maximize: $Z=₹(40 x+25 y)$, Subject to constraints: $x+y \leq 80 ; 2 x+y \leq 10 ; x, y \geq 0$.
Also, Maximum value of $Z=₹ 2300$ at $(20,60)$

$$
\text { Q29. } \frac{28}{69} .
$$

ANSWERS Of Questions from Set II \& Set III which are not in Set I

Section - B

Q03. $x=1 \quad$ Q04. $x=\frac{\pi}{4}, \frac{\pi}{2}$

Q01. 8 I ; $x=3, y=-2, z=-1$

Q07. $a=3, b=-2 \quad$ Q08. $\mathrm{k}=6$.

Section - C

Q02. $\frac{1}{67}\left[\begin{array}{ccc}-6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1\end{array}\right] ; x=3, y=-2, z=1$.

